Internal
problem
ID
[15217]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
2,
DIFFERENTIAL
EQUATIONS
OF
THE
SECOND
ORDER
AND
HIGHER.
Problems
page
172
Problem
number
:
Problem
52
Date
solved
:
Thursday, October 02, 2025 at 10:07:25 AM
CAS
classification
:
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=x*y(x)*diff(diff(y(x),x),x)-x*diff(y(x),x)^2-y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*y[x]*D[y[x],{x,2}]-x*D[y[x],x]^2-y[x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x)**2 - y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((4*x**2*Derivative(y(x), (x, 2)) + y(x))*y(x)) - y(x))/(2*x) cannot be solved by the factorable group method