61.1.6 problem Problem 1(f)

Internal problem ID [15234]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 2, First Order Equations. Problems page 149
Problem number : Problem 1(f)
Date solved : Thursday, October 02, 2025 at 10:07:42 AM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} x y^{\prime }+y&=x y^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=x*diff(y(x),x)+y(x) = x*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{\left (-\ln \left (x \right )+c_1 \right ) x} \]
Mathematica. Time used: 0.082 (sec). Leaf size: 22
ode=x*D[y[x],x]+y[x]==x*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{-x \log (x)+c_1 x}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.114 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)**2 + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{x \left (C_{1} - \log {\left (x \right )}\right )} \]