1.11.54 problem 56

Internal problem ID [375]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.5 (Nonhomogeneous equations and undetermined coefficients). Problems at page 161
Problem number : 56
Date solved : Tuesday, September 30, 2025 at 03:57:59 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)-4*y(x) = exp(x)*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} c_1 +{\mathrm e}^{2 x} c_2 +\frac {\left (-3 x -2\right ) {\mathrm e}^{x}}{9} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 34
ode=D[y[x],{x,2}]-4*y[x]==x*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{9} e^x (3 x+2)+c_1 e^{2 x}+c_2 e^{-2 x} \end{align*}
Sympy. Time used: 0.058 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(x) - 4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{2 x} - \frac {x e^{x}}{3} - \frac {2 e^{x}}{9} \]