Internal
problem
ID
[15314]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.5
Laplace
transform.
Homogeneous
equations.
Problems
page
357
Problem
number
:
Problem
16
Date
solved
:
Thursday, October 02, 2025 at 10:11:33 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using Laplace method With initial conditions
ode:=2*diff(diff(y(t),t),t)+3*diff(y(t),t)+y(t) = 0; ic:=[y(0) = 3, D(y)(0) = -1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=2*D[y[t],{t,2}]+3*D[y[t],t]+y[t]==0; ic={y[0]==3,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) + 3*Derivative(y(t), t) + 2*Derivative(y(t), (t, 2)),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): -1} dsolve(ode,func=y(t),ics=ics)