Internal
problem
ID
[15337]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(k)[l]
Date
solved
:
Thursday, October 02, 2025 at 10:11:45 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=2*diff(diff(y(t),t),t)+diff(y(t),t)-y(t) = 4*sin(t); ic:=[y(0) = 0, D(y)(0) = -4]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=2*D[y[t],{t,2}]+D[y[t],t]-y[t]==4*Sin[t]; ic={y[0]==0,Derivative[1][y][0] ==-4}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t) - 4*sin(t) + Derivative(y(t), t) + 2*Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): -4} dsolve(ode,func=y(t),ics=ics)