Internal
problem
ID
[15339]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(l)[n]
Date
solved
:
Thursday, October 02, 2025 at 10:11:46 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=3*diff(diff(y(t),t),t)+5*diff(y(t),t)-2*y(t) = 7*exp(-2*t); ic:=[y(0) = 3, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=3*D[y[t],{t,2}]+5*D[y[t],t]-2*y[t]==7*Exp[-2*t]; ic={y[0]==3,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*y(t) + 5*Derivative(y(t), t) + 3*Derivative(y(t), (t, 2)) - 7*exp(-2*t),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)