Internal
problem
ID
[15347]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
3(h)
Date
solved
:
Thursday, October 02, 2025 at 10:11:52 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = 3*Heaviside(t)-3*Heaviside(t-4)+(2*t-5)*Heaviside(t-4); ic:=[y(0) = 3/4, D(y)(0) = 2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*y[t]==3*(UnitStep[t]-UnitStep[t-4])+(2*t-5)*UnitStep[t-4]; ic={y[0]==3/4,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((5 - 2*t)*Heaviside(t - 4) + 4*y(t) - 3*Heaviside(t) + 3*Heaviside(t - 4) + Derivative(y(t), (t, 2)),0) ics = {y(0): 3/4, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)