Internal
problem
ID
[15361]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
6(a)
Date
solved
:
Thursday, October 02, 2025 at 10:12:06 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=10*diff(Q(t),t)+100*Q(t) = Heaviside(t-1)-Heaviside(t-2); ic:=[Q(0) = 0]; dsolve([ode,op(ic)],Q(t),method='laplace');
ode=10*D[ q[t],t]+100*q[t]==UnitStep[t-1]-UnitStep[t-2]; ic={q[0]==0}; DSolve[{ode,ic},q[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") q = Function("q") ode = Eq(100*q(t) + Heaviside(t - 2) - Heaviside(t - 1) + 10*Derivative(q(t), t),0) ics = {q(0): 0} dsolve(ode,func=q(t),ics=ics)