Internal
problem
ID
[15366]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
14(a)
Date
solved
:
Thursday, October 02, 2025 at 10:12:10 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-5*diff(diff(y(t),t),t)+4*y(t) = 12*Heaviside(t)-12*Heaviside(t-1); ic:=[y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0, (D@@3)(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,4}]-5*D[y[t],{t,2}]+4*y[t]==12*(UnitStep[t]-UnitStep[t-1]); ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0,Derivative[3][y][0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 12*Heaviside(t) + 12*Heaviside(t - 1) - 5*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 4)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 0, Subs(Derivative(y(t), (t, 3)), t, 0): 0} dsolve(ode,func=y(t),ics=ics)