61.5.12 problem Problem 3(a)

Internal problem ID [15379]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 6. Introduction to Systems of ODEs. Problems page 408
Problem number : Problem 3(a)
Date solved : Thursday, October 02, 2025 at 10:12:22 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=x \left (t \right )-2 y\\ y^{\prime }&=3 x \left (t \right )-4 y \end{align*}
Maple. Time used: 0.114 (sec). Leaf size: 34
ode:=[diff(x(t),t) = x(t)-2*y(t), diff(y(t),t) = 3*x(t)-4*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{-2 t}+c_2 \,{\mathrm e}^{-t} \\ y \left (t \right ) &= \frac {3 c_1 \,{\mathrm e}^{-2 t}}{2}+c_2 \,{\mathrm e}^{-t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 60
ode={D[x[t],t]==x[t]-2*y[t],D[y[t],t]==3*x[t]-4*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{-2 t} \left (c_1 \left (3 e^t-2\right )-2 c_2 \left (e^t-1\right )\right )\\ y(t)&\to e^{-2 t} \left (3 c_1 \left (e^t-1\right )+c_2 \left (3-2 e^t\right )\right ) \end{align*}
Sympy. Time used: 0.051 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) + 4*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {2 C_{1} e^{- 2 t}}{3} + C_{2} e^{- t}, \ y{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{- t}\right ] \]