Internal
problem
ID
[15390]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.4
Reduction
to
a
single
ODE.
Problems
page
415
Problem
number
:
Problem
4(e)
Date
solved
:
Thursday, October 02, 2025 at 10:12:29 AM
CAS
classification
:
system_of_ODEs
ode:=[5*diff(x(t),t)-3*diff(y(t),t) = x(t)+y(t), 3*diff(x(t),t)-diff(y(t),t) = t]; dsolve(ode);
ode={5*D[x[t],t]-3*D[y[t],t]==x[t]+y[t],3*D[x[t],t]-D[y[t],t]==t}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t) - y(t) + 5*Derivative(x(t), t) - 3*Derivative(y(t), t),0),Eq(-t + 3*Derivative(x(t), t) - Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)