Internal
problem
ID
[15393]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
3(a)
Date
solved
:
Thursday, October 02, 2025 at 10:12:31 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -4*x(t)+9*y(t)+12*exp(-t), diff(y(t),t) = -5*x(t)+2*y(t)]; dsolve(ode);
ode={D[x[t],t]==-4*x[t]+9*y[t]+12*Exp[-t],D[y[t],t]==-5*x[t]+2*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(4*x(t) - 9*y(t) + Derivative(x(t), t) - 12*exp(-t),0),Eq(5*x(t) - 2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)