61.7.3 problem Problem 3(c)

Internal problem ID [15395]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 8.3 Systems of Linear Differential Equations (Variation of Parameters). Problems page 514
Problem number : Problem 3(c)
Date solved : Thursday, October 02, 2025 at 10:12:33 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=-7 x \left (t \right )+10 y+18 \,{\mathrm e}^{t}\\ y^{\prime }&=-10 x \left (t \right )+9 y+37 \end{align*}
Maple. Time used: 0.397 (sec). Leaf size: 80
ode:=[diff(x(t),t) = -7*x(t)+10*y(t)+18*exp(t), diff(y(t),t) = -10*x(t)+9*y(t)+37]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= 10+\frac {{\mathrm e}^{t} \left (-20+3 \sin \left (6 t \right ) c_1 +4 \sin \left (6 t \right ) c_2 +4 \cos \left (6 t \right ) c_1 -3 \cos \left (6 t \right ) c_2 -15 \sin \left (6 t \right )-20 \cos \left (6 t \right )\right )}{5} \\ y \left (t \right ) &= 7+{\mathrm e}^{t} \left (-5+\cos \left (6 t \right ) c_1 +\sin \left (6 t \right ) c_2 -5 \cos \left (6 t \right )\right ) \\ \end{align*}
Mathematica. Time used: 0.291 (sec). Leaf size: 260
ode={D[x[t],t]==-7*x[t]+10*y[t]+18*Exp[t],D[y[t],t]==-10*x[t]+9*y[t]+37}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{3} e^t \left ((3 \cos (6 t)-4 \sin (6 t)) \int _1^t\left (18 \cos (6 K[1])+\frac {1}{3} \left (72-185 e^{-K[1]}\right ) \sin (6 K[1])\right )dK[1]+5 \sin (6 t) \int _1^t\left (\frac {37}{3} e^{-K[2]} (3 \cos (6 K[2])-4 \sin (6 K[2]))+30 \sin (6 K[2])\right )dK[2]+3 c_1 \cos (6 t)-4 c_1 \sin (6 t)+5 c_2 \sin (6 t)\right )\\ y(t)&\to \frac {1}{3} e^t \left (-5 \sin (6 t) \int _1^t\left (18 \cos (6 K[1])+\frac {1}{3} \left (72-185 e^{-K[1]}\right ) \sin (6 K[1])\right )dK[1]+(4 \sin (6 t)+3 \cos (6 t)) \int _1^t\left (\frac {37}{3} e^{-K[2]} (3 \cos (6 K[2])-4 \sin (6 K[2]))+30 \sin (6 K[2])\right )dK[2]+3 c_2 \cos (6 t)-5 c_1 \sin (6 t)+4 c_2 \sin (6 t)\right ) \end{align*}
Sympy. Time used: 0.235 (sec). Leaf size: 143
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(7*x(t) - 10*y(t) - 18*exp(t) + Derivative(x(t), t),0),Eq(10*x(t) - 9*y(t) + Derivative(y(t), t) - 37,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \left (\frac {3 C_{1}}{5} + \frac {4 C_{2}}{5}\right ) e^{t} \cos {\left (6 t \right )} - \left (\frac {4 C_{1}}{5} - \frac {3 C_{2}}{5}\right ) e^{t} \sin {\left (6 t \right )} - 4 e^{t} \sin ^{2}{\left (6 t \right )} - 4 e^{t} \cos ^{2}{\left (6 t \right )} + 10 \sin ^{2}{\left (6 t \right )} + 10 \cos ^{2}{\left (6 t \right )}, \ y{\left (t \right )} = - C_{1} e^{t} \sin {\left (6 t \right )} + C_{2} e^{t} \cos {\left (6 t \right )} - 5 e^{t} \sin ^{2}{\left (6 t \right )} - 5 e^{t} \cos ^{2}{\left (6 t \right )} + 7 \sin ^{2}{\left (6 t \right )} + 7 \cos ^{2}{\left (6 t \right )}\right ] \]