Internal
problem
ID
[15398]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
4(b)
Date
solved
:
Thursday, October 02, 2025 at 10:12:38 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)+6*y(t)-2*z(t)+50*exp(t), diff(y(t),t) = 6*x(t)+2*y(t)-2*z(t)+21*exp(-t), diff(z(t),t) = -x(t)+6*y(t)+z(t)+9]; dsolve(ode);
ode={D[x[t],t]==2*x[t]+6*y[t]-2*z[t]+50*Exp[t],D[y[t],t]==6*x[t]+2*y[t]-2*z[t]+21*Exp[-t],D[z[t],t]==-x[t]+6*y[t]+z[t]+9}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-2*x(t) - 6*y(t) + 2*z(t) - 50*exp(t) + Derivative(x(t), t),0),Eq(-6*x(t) - 2*y(t) + 2*z(t) + Derivative(y(t), t) - 21*exp(-t),0),Eq(x(t) - 6*y(t) - z(t) + Derivative(z(t), t) - 9,0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)