Internal
problem
ID
[15402]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
5(b)
Date
solved
:
Thursday, October 02, 2025 at 10:12:42 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 3*x(t)-2*y(t)+24*sin(t), diff(y(t),t) = 9*x(t)-3*y(t)+12*cos(t)]; ic:=[x(0) = 1, y(0) = -1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==3*x[t]-2*y[t]+24*Sin[t],D[y[t],t]==9*x[t]-3*y[t]+12*Cos[t]}; ic={x[0]==1,y[0]==-1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-3*x(t) + 2*y(t) - 24*sin(t) + Derivative(x(t), t),0),Eq(-9*x(t) + 3*y(t) - 12*cos(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)