Internal
problem
ID
[15408]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
6(d)
Date
solved
:
Thursday, October 02, 2025 at 10:13:45 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -3*x(t)+y(t)-3*z(t)+2*exp(t), diff(y(t),t) = 4*x(t)-y(t)+2*z(t)+4*exp(t), diff(z(t),t) = 4*x(t)-2*y(t)+3*z(t)+4*exp(t)]; ic:=[x(0) = 1, y(0) = 2, z(0) = 3]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==-3*x[t]+y[t]-3*z[t]+2*Exp[t],D[y[t],t]==4*x[t]-y[t]+2*z[t]+4*Exp[t],D[z[t],t]==4*x[t]-2*y[t]+3*z[t]+4*Exp[t]}; ic={x[0]==1,y[0]==2,z[0]==3}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(3*x(t) - y(t) + 3*z(t) - 2*exp(t) + Derivative(x(t), t),0),Eq(-4*x(t) + y(t) - 2*z(t) - 4*exp(t) + Derivative(y(t), t),0),Eq(-4*x(t) + 2*y(t) - 3*z(t) - 4*exp(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)