Internal
problem
ID
[15409]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.4
Systems
of
Linear
Differential
Equations
(Method
of
Undetermined
Coefficients).
Problems
page
520
Problem
number
:
Problem
1(a)
Date
solved
:
Thursday, October 02, 2025 at 10:13:47 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)+5*y(t)+10*sinh(t), diff(y(t),t) = 19*x(t)-13*y(t)+24*sinh(t)]; dsolve(ode);
ode={D[x[t],t]==x[t]+5*y[t]+10*Sinh[t],D[y[t],t]==19*x[t]-13*y[t]+24*Sinh[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t) - 5*y(t) - 10*sinh(t) + Derivative(x(t), t),0),Eq(-19*x(t) + 13*y(t) - 24*sinh(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)