62.2.2 problem Problem 3.7(b)

Internal problem ID [15428]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 3 Bessel functions. Problems page 89
Problem number : Problem 3.7(b)
Date solved : Thursday, October 02, 2025 at 10:14:02 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }+y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=x*diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {BesselJ}\left (0, 2 \sqrt {x}\right )+c_2 \operatorname {BesselY}\left (0, 2 \sqrt {x}\right ) \]
Mathematica. Time used: 0.02 (sec). Leaf size: 31
ode=x*D[y[x],{x,2}]+D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \operatorname {BesselJ}\left (0,2 \sqrt {x}\right )+2 c_2 \operatorname {BesselY}\left (0,2 \sqrt {x}\right ) \end{align*}
Sympy. Time used: 0.083 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{0}\left (2 \sqrt {x}\right ) + C_{2} Y_{0}\left (2 \sqrt {x}\right ) \]