Internal
problem
ID
[15435]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
6.
Laplace
transforms.
Problems
page
172
Problem
number
:
6.3
(a)
Date
solved
:
Thursday, October 02, 2025 at 10:14:08 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+9*y(t) = 18*t; ic:=[y(0) = 0, y(1/2*Pi) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+9*y[t]==18*t; ic={y[0]==0,y[Pi/2]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-18*t + 9*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, y(pi/2): 0} dsolve(ode,func=y(t),ics=ics)