63.1.5 problem 5

Internal problem ID [15445]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 5
Date solved : Thursday, October 02, 2025 at 10:14:51 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=diff(diff(diff(y(x),x),x),x)+3/x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 x +\frac {c_3}{x} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 21
ode=D[y[x],{x,3}]+3/x*D[y[x],{x,2}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{2 x}+c_3 x+c_2 \end{align*}
Sympy. Time used: 0.036 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 3)) + 3*Derivative(y(x), (x, 2))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} + C_{3} x \]