Internal
problem
ID
[15469]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
46
Date
solved
:
Thursday, October 02, 2025 at 10:15:40 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x*y(x)^2*diff(y(x),x) = x^3+y(x)^3; dsolve(ode,y(x), singsol=all);
ode=x*y[x]^2*D[y[x],x]==(x^3+y[x]^3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + x*y(x)**2*Derivative(y(x), x) - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)