63.1.45 problem 64

Internal problem ID [15485]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 64
Date solved : Thursday, October 02, 2025 at 10:18:28 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&={\mathrm e}^{-x} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x)+y(x) = exp(-x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +c_1 \right ) {\mathrm e}^{-x} \]
Mathematica. Time used: 0.03 (sec). Leaf size: 15
ode=D[y[x],x]+y[x]==Exp[-x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} (x+c_1) \end{align*}
Sympy. Time used: 0.074 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), x) - exp(-x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x\right ) e^{- x} \]