Internal
problem
ID
[15493]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
72
Date
solved
:
Thursday, October 02, 2025 at 10:18:46 AM
CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
ode:=x^2+y(x)+(x-2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+y[x])+(x-2*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + (x - 2*y(x))*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out