63.1.71 problem 110

Internal problem ID [15511]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 110
Date solved : Thursday, October 02, 2025 at 10:19:13 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 13
ode:=diff(y(x),x) = 2*y(x)/x-3^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 x +\sqrt {3}\right ) x \]
Mathematica. Time used: 0.022 (sec). Leaf size: 17
ode=D[y[x],x]==2*y[x]/x-Sqrt[3]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \left (\sqrt {3}+c_1 x\right ) \end{align*}
Sympy. Time used: 0.145 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + sqrt(3) - 2*y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} x + \sqrt {3}\right ) \]