Internal
problem
ID
[15522]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
127
Date
solved
:
Thursday, October 02, 2025 at 10:19:31 AM
CAS
classification
:
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
ode:=diff(diff(diff(y(x),x),x),x) = diff(diff(y(x),x),x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]==(D[y[x],{x,2}])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Derivative(y(x), (x, 2))**2 + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)