63.1.107 problem 154

Internal problem ID [15547]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 154
Date solved : Thursday, October 02, 2025 at 10:19:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+9 y&=6 \,{\mathrm e}^{3 x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+9*y(x) = 6*exp(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (3 x \right ) c_2 +\cos \left (3 x \right ) c_1 +\frac {{\mathrm e}^{3 x}}{3} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 29
ode=D[y[x],{x,2}]+9*y[x]==6*Exp[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{3 x}}{3}+c_1 \cos (3 x)+c_2 \sin (3 x) \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) - 6*exp(3*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )} + \frac {e^{3 x}}{3} \]