Internal
problem
ID
[15551]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
158
Date
solved
:
Thursday, October 02, 2025 at 10:19:48 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)-4*diff(diff(y(x),x),x)+5*diff(y(x),x)-2*y(x) = 2*x+3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-4*D[y[x],{x,2}]+5*D[y[x],x]-2*y[x]==2*x+3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x - 2*y(x) + 5*Derivative(y(x), x) - 4*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - 3,0) ics = {} dsolve(ode,func=y(x),ics=ics)