63.1.136 problem 195

Internal problem ID [15576]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 195
Date solved : Thursday, October 02, 2025 at 10:20:21 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }+\frac {y}{x}&={\mathrm e}^{x} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.021 (sec). Leaf size: 16
ode:=diff(y(x),x)+y(x)/x = exp(x); 
ic:=[y(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\left (x -1\right ) {\mathrm e}^{x}+1}{x} \]
Mathematica. Time used: 0.031 (sec). Leaf size: 18
ode=D[y[x],x]+1/x*y[x]==Exp[x]; 
ic={y[1]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^x (x-1)+1}{x} \end{align*}
Sympy. Time used: 0.120 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(x) + Derivative(y(x), x) + y(x)/x,0) 
ics = {y(1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{x} - \frac {e^{x}}{x} + \frac {1}{x} \]