Internal
problem
ID
[15580]
Book
:
Nonlinear
Ordinary
Differential
Equations
by
D.W.Jordna
and
P.Smith.
4th
edition
1999.
Oxford
Univ.
Press.
NY
Section
:
Chapter
2.
Plane
autonomous
systems
and
linearization.
Problems
page
79
Problem
number
:
2.1
(iii)
Date
solved
:
Thursday, October 02, 2025 at 10:20:24 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -4*x(t)+2*y(t), diff(y(t),t) = 3*x(t)-2*y(t)]; dsolve(ode);
ode={D[x[t],t]==-4*x[t]+2*y[t],D[y[t],t]==3*x[t]-2*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(4*x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) + 2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)