Internal
problem
ID
[15592]
Book
:
Nonlinear
Ordinary
Differential
Equations
by
D.W.Jordna
and
P.Smith.
4th
edition
1999.
Oxford
Univ.
Press.
NY
Section
:
Chapter
2.
Plane
autonomous
systems
and
linearization.
Problems
page
79
Problem
number
:
2.4
(ii)
Date
solved
:
Thursday, October 02, 2025 at 10:20:32 AM
CAS
classification
:
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]
ode:=diff(diff(x(t),t),t)+x(t)+x(t)^3 = 0; dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]+x[t]+x[t]^3==0; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(x(t)**3 + x(t) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)
Timed Out