65.1.11 problem 25

Internal problem ID [15607]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 1. Introduction. Exercises page 14
Problem number : 25
Date solved : Thursday, October 02, 2025 at 10:21:03 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +\frac {c_2}{\sqrt {x}} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 18
ode=2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{\sqrt {x}}+c_2 x \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x}} + C_{2} x \]