Internal
problem
ID
[15771]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.1,
page
186
Problem
number
:
5
Date
solved
:
Friday, October 03, 2025 at 07:30:22 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=(1-x)^(1/2)*diff(diff(y(x),x),x)-4*y(x) = sin(x); ic:=[y(-2) = 3, D(y)(-2) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=Sqrt[1-x]*D[y[x],{x,2}]-4*y[x]==Sin[x]; ic={y[-2]==3,Derivative[1][y][-2]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sqrt(1 - x)*Derivative(y(x), (x, 2)) - 4*y(x) - sin(x),0) ics = {y(-2): 3, Subs(Derivative(y(x), x), x, -2): -1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve sqrt(1 - x)*Derivative(y(x), (x, 2)) - 4*y(x) - sin(x)