65.10.14 problem 19

Internal problem ID [15796]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number : 19
Date solved : Thursday, October 02, 2025 at 10:28:06 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }-i y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 8
ode:=diff(y(x),x)-I*y(x) = 0; 
ic:=[y(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = {\mathrm e}^{i x} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 12
ode=D[y[x],x]-I*y[x]==0; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{i x} \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(complex(0, -1)*y(x) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{- x \operatorname {complex}{\left (0,-1 \right )}} \]