65.12.2 problem 2

Internal problem ID [15805]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221
Problem number : 2
Date solved : Thursday, October 02, 2025 at 10:28:12 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=-1 \\ y^{\prime \prime }\left (0\right )&=-3 \\ y^{\prime \prime \prime }\left (0\right )&=3 \\ \end{align*}
Maple. Time used: 0.053 (sec). Leaf size: 24
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+2*diff(y(x),x)-y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = -1, (D@@2)(y)(0) = -3, (D@@3)(y)(0) = 3]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -{\mathrm e}^{-x}+\left (2 x^{2}-4 x +2\right ) {\mathrm e}^{x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 25
ode=D[y[x],{x,4}]-2*D[y[x],{x,3}]+2*D[y[x],x]-y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==-1,Derivative[2][y][0] ==-3,Derivative[3][y][0]==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (2 e^{2 x} (x-1)^2-1\right ) \end{align*}
Sympy. Time used: 0.155 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + 2*Derivative(y(x), x) - 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1, Subs(Derivative(y(x), (x, 2)), x, 0): -3, Subs(Derivative(y(x), (x, 3)), x, 0): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (x \left (2 x - 4\right ) + 2\right ) e^{x} - e^{- x} \]