Internal
problem
ID
[15825]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.3,
page
255
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 10:28:21 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(x),x),x)+9*y(x) = 18*exp(3*x); ic:=[y(0) = -1, D(y)(0) = 6]; dsolve([ode,op(ic)],y(x),method='laplace');
ode=D[y[x],{x,2}]+9*y[x]==18*Exp[3*x]; ic={y[0]==-1,Derivative[1][y][0] ==6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - 18*exp(3*x) + Derivative(y(x), (x, 2)),0) ics = {y(0): -1, Subs(Derivative(y(x), x), x, 0): 6} dsolve(ode,func=y(x),ics=ics)