Internal
problem
ID
[15867]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
8.
Linear
Systems
of
First-Order
Differential
Equations.
Exercises
8.3
page
379
Problem
number
:
5
c
Date
solved
:
Thursday, October 02, 2025 at 10:28:54 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = 2*y__1(x)-3*y__2(x)+4*x-2, diff(y__2(x),x) = y__1(x)-2*y__2(x)+3*x]; dsolve(ode);
ode={D[ y1[x],x]==-2*y1[x]-3*y2[x]+4*x-2,D[ y2[x],x]==y1[x]-2*y2[x]+3*x}; ic={}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(-4*x - 2*y__1(x) + 3*y__2(x) + Derivative(y__1(x), x) + 2,0),Eq(-3*x - y__1(x) + 2*y__2(x) + Derivative(y__2(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)