66.1.35 problem 38

Internal problem ID [15922]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number : 38
Date solved : Thursday, October 02, 2025 at 10:30:07 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\frac {y^{2}+5}{y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-2 \\ \end{align*}
Maple. Time used: 0.083 (sec). Leaf size: 16
ode:=diff(y(t),t) = (y(t)^2+5)/y(t); 
ic:=[y(0) = -2]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = -\sqrt {9 \,{\mathrm e}^{2 t}-5} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 20
ode=D[y[t],t]==(y[t]^2+5)/y[t]; 
ic={y[0]==-2}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\sqrt {9 e^{2 t}-5} \end{align*}
Sympy. Time used: 0.396 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((-y(t)**2 - 5)/y(t) + Derivative(y(t), t),0) 
ics = {y(0): -2} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \sqrt {9 e^{2 t} - 5} \]