66.5.25 problem 12

Internal problem ID [15998]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number : 12
Date solved : Thursday, October 02, 2025 at 10:38:17 AM
CAS classification : [_quadrature]

\begin{align*} w^{\prime }&=\left (w^{2}-2\right ) \arctan \left (w\right ) \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 25
ode:=diff(w(t),t) = (w(t)^2-2)*arctan(w(t)); 
dsolve(ode,w(t), singsol=all);
 
\[ t -\int _{}^{w}\frac {1}{\left (\textit {\_a}^{2}-2\right ) \arctan \left (\textit {\_a} \right )}d \textit {\_a} +c_1 = 0 \]
Mathematica. Time used: 0.296 (sec). Leaf size: 62
ode=D[w[t],t]==(w[t]^2-2)*Arctan[ w[t]]; 
ic={}; 
DSolve[{ode,ic},w[t],t,IncludeSingularSolutions->True]
 
\begin{align*} w(t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\text {Arctan}(K[1]) \left (K[1]^2-2\right )}dK[1]\&\right ][t+c_1]\\ w(t)&\to -\sqrt {2}\\ w(t)&\to \sqrt {2}\\ w(t)&\to \text {Arctan}^{(-1)}(0) \end{align*}
Sympy. Time used: 0.687 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
w = Function("w") 
ode = Eq((2 - w(t)**2)*atan(w(t)) + Derivative(w(t), t),0) 
ics = {} 
dsolve(ode,func=w(t),ics=ics)
 
\[ - \int \limits ^{w{\left (t \right )}} \frac {1}{\left (y^{2} - 2\right ) \operatorname {atan}{\left (y \right )}}\, dy = C_{1} - t \]