66.6.11 problem 11

Internal problem ID [16023]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number : 11
Date solved : Thursday, October 02, 2025 at 10:39:01 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} -2 y+y^{\prime }&=7 \,{\mathrm e}^{2 t} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3 \\ \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 14
ode:=diff(y(t),t)-2*y(t) = 7*exp(2*t); 
ic:=[y(0) = 3]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \left (7 t +3\right ) {\mathrm e}^{2 t} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 16
ode=D[y[t],t]-2*y[t]==7*Exp[2*t]; 
ic={y[0]==3}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{2 t} (7 t+3) \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*y(t) - 7*exp(2*t) + Derivative(y(t), t),0) 
ics = {y(0): 3} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (7 t + 3\right ) e^{2 t} \]