66.10.21 problem 14 (b)

Internal problem ID [16119]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number : 14 (b)
Date solved : Thursday, October 02, 2025 at 10:42:39 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=4 x \left (t \right )-2 y\\ y^{\prime }&=x \left (t \right )+y \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=2 \\ y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.123 (sec). Leaf size: 17
ode:=[diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = x(t)+y(t)]; 
ic:=[x(0) = 2, y(0) = 1]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= 2 \,{\mathrm e}^{3 t} \\ y \left (t \right ) &= {\mathrm e}^{3 t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 20
ode={D[x[t],t]==4*x[t]-2*y[t],D[y[t],t]==x[t]+y[t]}; 
ic={x[0]==2,y[0]==1}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 2 e^{3 t}\\ y(t)&\to e^{3 t} \end{align*}
Sympy. Time used: 0.051 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-4*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} e^{2 t} + 2 C_{2} e^{3 t}, \ y{\left (t \right )} = C_{1} e^{2 t} + C_{2} e^{3 t}\right ] \]