66.11.13 problem 24

Internal problem ID [16133]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number : 24
Date solved : Thursday, October 02, 2025 at 10:42:49 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=-\frac {9 x \left (t \right )}{10}-2 y\\ y^{\prime }&=x \left (t \right )+\frac {11 y}{10} \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=1 \\ y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.146 (sec). Leaf size: 34
ode:=[diff(x(t),t) = -9/10*x(t)-2*y(t), diff(y(t),t) = x(t)+11/10*y(t)]; 
ic:=[x(0) = 1, y(0) = 1]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\frac {t}{10}} \left (-3 \sin \left (t \right )+\cos \left (t \right )\right ) \\ y \left (t \right ) &= -\frac {{\mathrm e}^{\frac {t}{10}} \left (-4 \sin \left (t \right )-2 \cos \left (t \right )\right )}{2} \\ \end{align*}
Mathematica. Time used: 0.006 (sec). Leaf size: 38
ode={D[x[t],t]==-9/10*x[t]-2*y[t],D[y[t],t]==x[t]+11/10*y[t]}; 
ic={x[0]==1,y[0]==1}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{t/10} (\cos (t)-3 \sin (t))\\ y(t)&\to e^{t/10} (2 \sin (t)+\cos (t)) \end{align*}
Sympy. Time used: 0.072 (sec). Leaf size: 49
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(9*x(t)/10 + 2*y(t) + Derivative(x(t), t),0),Eq(-x(t) - 11*y(t)/10 + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \left (C_{1} - C_{2}\right ) e^{\frac {t}{10}} \sin {\left (t \right )} - \left (C_{1} + C_{2}\right ) e^{\frac {t}{10}} \cos {\left (t \right )}, \ y{\left (t \right )} = C_{1} e^{\frac {t}{10}} \cos {\left (t \right )} - C_{2} e^{\frac {t}{10}} \sin {\left (t \right )}\right ] \]