66.12.1 problem 1

Internal problem ID [16135]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number : 1
Date solved : Thursday, October 02, 2025 at 10:42:50 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=-3 x \left (t \right )\\ y^{\prime }&=x \left (t \right )-3 y \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=1 \\ y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.143 (sec). Leaf size: 17
ode:=[diff(x(t),t) = -3*x(t), diff(y(t),t) = x(t)-3*y(t)]; 
ic:=[x(0) = 1, y(0) = 0]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-3 t} \\ y \left (t \right ) &= t \,{\mathrm e}^{-3 t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 20
ode={D[x[t],t]==-3*x[t],D[y[t],t]==x[t]-3*y[t]}; 
ic={x[0]==1,y[0]==0}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{-3 t}\\ y(t)&\to e^{-3 t} t \end{align*}
Sympy. Time used: 0.040 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(3*x(t) + Derivative(x(t), t),0),Eq(-x(t) + 3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} e^{- 3 t}, \ y{\left (t \right )} = C_{1} t e^{- 3 t} + C_{2} e^{- 3 t}\right ] \]