Internal
problem
ID
[16168]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
3.
Linear
Systems.
Review
Exercises
for
chapter
3.
page
376
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 10:43:10 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t), diff(y(t),t) = -2*y(t)]; dsolve(ode);
ode={D[x[t],t]==3*x[t]+0*y[t],D[y[t],t]==0*x[t]-2*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-3*x(t) + Derivative(x(t), t),0),Eq(2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)