Internal
problem
ID
[16201]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
4.
Forcing
and
Resonance.
Section
4.1
page
399
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 10:43:31 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+20*y(t) = exp(-4*t); ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+4*D[y[t],t]+20*y[t]==Exp[-4*t]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(20*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(-4*t),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)