67.1.1 problem 2.2 (a)

Internal problem ID [16266]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 2. Integration and differential equations. Additional exercises. page 32
Problem number : 2.2 (a)
Date solved : Thursday, October 02, 2025 at 10:44:30 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=3-\sin \left (x \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=diff(y(x),x) = 3-sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \cos \left (x \right )+3 x +c_1 \]
Mathematica. Time used: 0.005 (sec). Leaf size: 22
ode=D[y[x],x]==3-Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x(3-\sin (K[1]))dK[1]+c_1 \end{align*}
Sympy. Time used: 0.065 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(x) + Derivative(y(x), x) - 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + 3 x + \cos {\left (x \right )} \]