67.1.11 problem 2.3 (a)

Internal problem ID [16276]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 2. Integration and differential equations. Additional exercises. page 32
Problem number : 2.3 (a)
Date solved : Thursday, October 02, 2025 at 10:45:16 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=4 x^{3} \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 9
ode:=diff(y(x),x) = 4*x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{4}+c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 11
ode=D[y[x],x]==4*x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^4+c_1 \end{align*}
Sympy. Time used: 0.060 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x**3 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + x^{4} \]