67.1.15 problem 2.3 (e)

Internal problem ID [16280]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 2. Integration and differential equations. Additional exercises. page 32
Problem number : 2.3 (e)
Date solved : Thursday, October 02, 2025 at 10:45:18 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x \cos \left (x^{2}\right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = x*cos(x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sin \left (x^{2}\right )}{2}+c_1 \]
Mathematica. Time used: 0.005 (sec). Leaf size: 16
ode=D[y[x],x]==x*Cos[x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sin \left (x^2\right )}{2}+c_1 \end{align*}
Sympy. Time used: 0.099 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*cos(x**2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {\sin {\left (x^{2} \right )}}{2} \]