67.1.30 problem 2.5 (a)

Internal problem ID [16295]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 2. Integration and differential equations. Additional exercises. page 32
Problem number : 2.5 (a)
Date solved : Thursday, October 02, 2025 at 10:45:27 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = sin(1/2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2 \cos \left (\frac {x}{2}\right )+c_1 \]
Mathematica. Time used: 0.014 (sec). Leaf size: 22
ode=D[y[x],x]==Sin[x/2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\sin \left (\frac {K[1]}{2}\right )dK[1]+c_1 \end{align*}
Sympy. Time used: 0.061 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(x/2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - 2 \cos {\left (\frac {x}{2} \right )} \]