67.1.34 problem 2.6 (b i)

Internal problem ID [16299]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 2. Integration and differential equations. Additional exercises. page 32
Problem number : 2.6 (b i)
Date solved : Thursday, October 02, 2025 at 10:45:29 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=16 \\ \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 11
ode:=diff(y(x),x) = 3*(x+3)^(1/2); 
ic:=[y(1) = 16]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 2 \left (x +3\right )^{{3}/{2}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 14
ode=D[y[x],x]==3*Sqrt[x+3]; 
ic={y[1]==16}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 2 (x+3)^{3/2} \end{align*}
Sympy. Time used: 0.077 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*sqrt(x + 3) + Derivative(y(x), x),0) 
ics = {y(1): 16} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 2 \left (x + 3\right )^{\frac {3}{2}} \]