67.2.2 problem 3.4 b

Internal problem ID [16312]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 3. Some basics about First order equations. Additional exercises. page 63
Problem number : 3.4 b
Date solved : Thursday, October 02, 2025 at 10:45:37 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} \sin \left (x +y\right )-y y^{\prime }&=0 \end{align*}
Maple
ode:=sin(x+y(x))-y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=Sin[x+y[x]]-y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*Derivative(y(x), x) + sin(x + y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out